OXIGÊNIO

A seção "Elemento químico" traz informações científicas e tecnológicas sobre as diferentes formas sob as quais os elementos químicos se manifestam na natureza e sua importância na história da humanidade, destacando seu papel no contexto de nosso país.

Eduardo Motta Alves Peixoto

xigênio, do grego oxi, 'azedo', gênio, 'gerador de', ou, 'eu produzo'), nome dado por A.-L. Lavoisier em 1777, por acreditar erroneamente que ele era um constituinte essencial de todos os ácidos (que aliás, não são exatamente de sabor azedo, mas sim ácido). O chinês Mao-Khoa no sec.VIII d.C., e depois Leonardo da Vinci, no sec.XV, foram os primeiros

a perceber que o ar não era um elemento. No seu livro, Mao-Khoa afirma que a atmosfera é composta de duas substâncias: Yan, ou ar completo (nitrogênio), e Yn, ou air incompleto (oxigênio). Além deste conhecimento ele afirmava que o ar comum poderia ser melhorado pelo uso de metais e mesmo carbono que roubariam a parte Yn do ar. Como se este fato não bastasse na enigmática história do oxigênio, no mundo ocidental, Leonardo da Vinci, artista e cientista famoso, mais conhecido pelo seu quadro da Monalisa, descreveu claramente a relação existente entre a combustão e a respiração, concluindo que Onde uma chama não vive nenhum animal que respira pode viver. No entanto, apesar de todas essas evidências a grande maioria dos livros atribui a C.W. Scheele (1742-1786) e a J. Priestley (1733-1780) a "descoberta" independente do oxigênio. Priestley, era um pastor anglicano e Scheele, um farmacêutico sueco; Priestley preparou O₂ aquecendo HgO, sobre Hg (mercúrio) líquido, confinados no interior de um cilindro de vidro invertido. O aquecimento foi efetuado fazendo-se uso de uma lente para focar os raios solares sobre o HgO no interior do cilindro, numa segunda-feira, 1° de agosto/1774, em Colne, Inglaterra. Na mesma época, 1771-3, Scheele, em Upsala, preparou O₂ de várias formas, como por exemplo, aquecendo KNO₃, ou Mg(NO₃)₂, ou HgO, ou uma mistura de H₃AsO₄ e MnO₂. Apesar disto, foi Lavoisier quem percebeu que este gás que Scheele chamava de ar vitríolo, era de fato a substância simples de um elemento, e um elemento chave para o nosso atual conceito de combustão. Isto levou-o a derrubar toda a Teoria do Flogístico e a criar a química moderna. Priestley pertencia, com James Watt e outros, a uma curiosa Sociedade Lunar, assim chamada por reunir-se toda primeira segunda-feira de lua cheia que, segundo consta, garantia a cada um achar o caminho à noite. Priestley era um simpatizante das causas revolucionárias dos franceses e dos americanos; por isto mesmo foi perseguido na Inglaterra e fugiu para os Estados Unidos da América do Norte, onde viveu em liberdade. Scheele, mostrou-se um químico excepcional. Recusouse a trabalhar em universidade, pois nas farmácias encontrava melhores condições de trabalho. Numa dessas, o dono faleceu. Scheele recuperou financeiramente a farmácia e comprou-a da jovem viúva Sra. Phol que, junto com a irmã de Scheele, passou a tocar os negócios. Percebendo que iria falecer (sofria seriamente de reumatismo), casou-se com a mesma, garantindo-lhe assim o retorno da propriedade.

O oxigênio é o elemento mais abundante na superfície da Terra;

Número Atômico Z=8

Massa Molar M=15,9994 g/mol
Isótopos Estáveis

¹⁶O (M=15,994915 g/mol, 99,763%) ¹⁷O (M=16,999134 g/mol, 0,037%) ¹⁸O (M=17,999160g/mol, 0,200%)

Ponto de Fusão -218,8 °C Ponto de Ebulição -183,0 °C (1 atm)

como elemento livre ele constitui cerca de 23% da atmosfera, em massa, e 46% da litosfera, e mais do que 85% da hidrosfera. Paradoxalmente, ele é o elemento mais abundante da superfície da Lua onde, em média, 3 em cada 5 átomos são de oxigênio (44,6% em massa). O oxigênio tem uma variedade alotrópica, o ozônio, O₃. Esta forma alotrópica do oxigênio tem grande importância na manutenção da vida na Terra uma vez que a sua presença na camada gasosa que envolve o nosso planeta ajudar a filtrar grande parte das radiações ultravioletas que nos atingiriam de forma catastrófica. Certos poluentes que atingem grandes altitudes, catalisam a destruição do ozônio, interferindo nesse processo de proteção; entre estes destruidores de ozônio estão certos compostos orgânicos fluorclorados empregados em compressores de ar-condicionado e geladeiras, assim como, ao que tudo indica, gases expelidos pelos jatos e foguetes espaciais. Enquanto em grandes altitudes o ozônio tem um papel predominantemente protetor, na baixa atmosfera onde vivemos ele cumpre o papel de um importante poluente: grande parte dos acidentes de carros é atribuída às falhas de pneus que sofrem com o ataque do ozônio que reage com as ligações duplas dos polímeros reduzindo o comprimento da sua cadeia e alterando a sua resistência. No ar ele danifica os tecidos da pele e dos pulmões levando lentamente a doenças próprias dos grandes centros urbanos poluídos. O oxigênio sólido, ou líquido, é azul-claro. É importante notar que esta cor azul do sólido deve-se a uma transição eletrônica (entre o estado fundamental triplete e estados excitados singletes). Por outro lado, a cor azul do céu deve-se ao espalhamento do tipo Rayleigh da luz solar pelas moléculas de oxigênio do ar. Cerca de 70% do oxigênio usado comercialmente é para remover o excesso de carbono dos aços. Na medicina o seu uso mais comum é na produção de ar enriquecido de O₂ para uso médico. Grande parte do O₂ é usado em soldas de metais com os maçaricos de oxihidrogênio e oxiacetileno. No entanto, cerca de 3/4 do oxigênio puro produzido é para o preparo de outras substâncias. Industrialmente, o oxigênio puro é preparado pela destilação fracionada do ar liquefeito, e assim o é também no Brasil.

Eduardo Motta Alves Peixoto, bacharel em química pela FFCL-USP e douor pela Universidade de Indiana, EUA, é professor associado no Instituto de Química da USP-São Paulo.